DHEA

DHEA

Compounded Immediate Release: 5 mg, 10 mg,15 mg, 20 mg, 25 mg, 30 mg, 40 mg, 50 mg, 75 mg, 100 mg, 125 mg, 150 mg Compounded Slow Release: 5 mg, 10 mg,15 mg, 20 mg, 25 mg, 30 mg, 40 mg, 50 mg, 75 mg, 100 mg, 125 mg, 150 mg

Dehydroepiandrosterone (DHEA) is a C19 steroid also known as 5-androsten-3 beta-ol-17-one. DHEA and DHEAS (an active, sulfated form of DHEA), are endogenous hormones secreted by the adrenal cortex in primates and a few non-primate species in response to ACTH. DHEA is a steroid precursor of both androgens and estrogens, and thus is often called 'the mother hormone'. Endogenous DHEA is thought to be important in several endocrine processes, but current medical use of DHEA is limited to controlled clinical trials. Exogenously administered DHEA is sold as a nutritional supplement in health and drug stores and many older individuals are using it to 'maintain the vitality of their youth'.

Endogenous DHEA is a complex hormone, and researchers still have much to discover in regards to its physiologic effects in males and females. Less is known regarding the mechanisms of action of exogenously administered DHEA. CNS actions: Both DHEA and DHEAS may be synthesized de-novo by the central nervous system, and concentrations of DHEA and DHEAS are higher in the brain than in other organs. Dermatologic actions after burn injury: Animal studies have suggested that DHEA and DHEAS expedite the re-epithelialization of donor skin-graft sites. Endogenous DHEA is synthesized by the conversion of cholesterol via CYP11A1 to pregnenolone, followed by CYP17 conversion to DHEA and then to DHEAS via dehydroepiandrosterone sulfatransferase. The synthesis of DHEA occurs exclusively in the adrenal cortex in women, while in men 10—25% of DHEA is synthesized by the testes and roughly 80% of the DHEA comes from the adrenal glands. DHEA is converted via hydrosteroid dehydrogenases and aromatase into androstenedione, testosterone, and estradiol by peripheral tissues. DHEA is of only minor importance as an androgenic substance itself. The production rate of DHEA by the body changes dramatically throughout life, typically peaking at adrenarche, the adrenal contribution to the onset of puberty. In males, DHEA serum levels are high in neonates right after birth, rapidly fall within 5 months, then begin to rise at the age of 9 years. Endogenous DHEA concentration then peaks again in males at roughly the 20th—30th years of life. In females, DHEA serum levels are high in neonates right after birth, rapidly fall within 5 months, then begin to rise at the age of 7 years. Endogenous DHEA concentration then peaks again in females at roughly the 20th and 40th year of life. DHEA levels decline steadily after the fifth decade in both males and females. DHEAS concentrations in males and females follow similar patterns. The administration of DHEA supplements results in different hormonal concentration changes in males and females; the actions are dependent on the dose, formulation and route of administration, and age of the person receiving the DHEA.1 DHEA and DHEAS have been noted in both male and female patients with lupus at the time of diagnosis. Chronic corticosteroid treatment, which may cause adrenal atrophy, contributes to reduced DHEA levels in these patients. Supplementation of DHEA in SLE may augment immune system activity and potentially offset the undesired effects of chronic corticosteroid use in these patients.6 Exact mechanisms of DHEA on immune function are not yet clear. DHEA has been shown to increase the numbers of natural killer cells in aging women. Serum DHEA levels are observed to be reduced in patients with AIDS or age-related immunodeficiency, suggesting that DHEA may serve as a marker of the integrity of the immune system.

Prasterone, dehydroepiandrosterone, DHEA is converted via hydrosteroid dehydrogenases and aromatase into androstenedione, testosterone, and estradiol by peripheral tissues.12 DHEA is a weak androgen that has complex hormonal effects. The action of 5-alpha reductase inhibitors (i.e., dutasteride, finasteride) could potentially be antagonized by DHEA administration. 5-alpha-reductase inhibitors have anti-androgenic effects on the prostate gland that may be antagonized by the androgenic effects of DHEA on these tissues. Avoid concurrent use. Corticosteroids blunt the adrenal secretion of endogenous DHEA and DHEAS, resulting in reduced DHEA and DHEAS serum concentrations. The impact of exogenous prasterone, dehydroepiandrosterone, DHEA administration on the safety or efficacy of chronic corticosteroid treatment regimens is not yet clear. The administration of DHEA to patients on corticosteroids should only be done under the observation of a qualified health care professional.15 Prasterone, dehydroepiandrosterone, DHEA appears to have antiplatelet effects,16 which may prolong bleeding times. Inhibition of platelet aggregation by DHEA has been demonstrated in vivo in humans; the rate of arachidonate-stimulated platelet aggregation was prolonged or completely inhibited.16 In addition, DHEA is converted to androgens and estrogens within the human body and thus may affect hemostasis via androgenic or estrogenic effects. Estrogens increase the production of clotting factors VII, VIII, IX, and X.17 Androgens, such as testosterone, increase the synthesis of several anticoagulant and fibrinolytic proteins. Because of these potential, varied effects on coagulation, patients receiving DHEA concurrently with anticoagulants (e.g., warfarin or heparin) or other platelet inhibitors, including aspirin, ASA should be monitored for side effects or the need for dosage adjustments. Prasterone, dehydroepiandrosterone, DHEA may inhibit the metabolism of triazolam, and other benzodiazepines (e.g., alprazolam, estazolam, midazolam) which undergo CYP3A4-mediated metabolism.

Your health care provider needs to know if you have any of these conditions: breast cancer (men or women); cancer of the lining of the uterus (endometrial cancer); diabetes or high blood sugar; immune system problems; infertility; liver disease; post-menopause; prostate cancer or an enlarged prostate gland; rheumatoid arthritis; uterine cancer; vaginal bleeding or menstrual problems; vaginal cancer; an unusual or allergic reaction to progesterone, DHEA, soy, other medicines, foods, dyes, or preservatives; pregnant or trying to get pregnant; breast-feeding.Women should inform their doctor if they wish to become pregnant or think they might be pregnant. There is a potential for serious side effects to an unborn child. DHEA use is banned in competitive sports. Both college (NCAA) and Olympic (USOC) committees do not allow DHEA use among athletes. DHEA supplementation in a woman with undiagnosed abnormal vaginal bleeding, endometrial cancer, endometrial hyperplasia, uterine cancer, or vaginal cancer is not recommended. DHEA may stimulate the growth of cancerous tissue and should not be used in male patients with either breast or prostate cancer. Male patients with symptoms of prostatic hypertrophy or erectile dysfunction that have not been medically evaluated should not take DHEA supplements.

DHEA should be considered a pregnancy category X drug, similar to other androgenic hormones. Studies of the role of endogenous fetal and maternal DHEA in pregnancy indicate that the ratio of DHEA or DHEAS to other hormones in the serum or placenta may influence the processes of fetal development, parturition, and labor. Endogenous DHEA and DHEAS appear to be important in the functional development of the adrenal cortex and other endocrine activities in the fetus; it is assumed that exogenous DHEA supplementation to a pregnant woman could potentially have deleterious effects on fetal development or viability. The androgenic effects of DHEA could potentially result in masculinization of a female fetus. No controlled trials of DHEA in primate or human gestation exist. Do not administer DHEA to a pregnant woman.

DHEA is a hormone and should not be supplemented in a lactating woman who is breast-feeding her infant. Most hormones are excreted in breast milk. Like other androgenic hormones, it is possible that DHEA could inhibit lactation. It is unknown what effect DHEA would have on the breast-feeding infant.

DHEA has been observed to cause reversible reductions in HDL cholesterol and total cholesterol in some clinical trials. DHEA may also exhibit anti-platelet effects. The influence of these changes on the development of side effects, atherosclerosis, or other cardiac-related endpoints is unknown. In one 3-month study of 28 women with SLE, the following ADRs were noted in the females receiving DHEA: acneiform rash (57%), hirsutism (14%), weight gain (14%), menstrual irregularity (7%), and emotional lability (7%). Prasterone, DHEA is a hormone with androgenic actions, however, the incidence of androgenic side effects is not known. When androgens are given to women, they may cause virilization, manifested by clitoromegaly, reduced breast size, and deepening of the voice or voice hoarseness. If treatment is discontinued when these symptoms first appear, they usually subside. Prolonged treatment with androgenic substances can lead to irreversible masculinity, so the benefit of DHEA treatment should be offset against the risk of androgen-like side effects. Mild peripheral edema can occur with DHEA use as the result of increased fluid retention (in association with sodium retention) and may be associated with mild weight gain. DHEA should be discontinued in any patient developing signs or symptoms of potential liver problems, including elevated hepatic enzymes, continued nausea and vomiting, fatigue, jaundice, or severe abdominal pain; the patient should be evaluated.

Store this medication at 68°F to 77°F (20°C to 25°C) and away from heat, moisture and light. Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond use date. Do not flush unused medications or pour down a sink or drain.